
Night 2

Version: 2019-12-27

Night 2: Angular Velocity, NEATOs, and Partial
Derivatives
Quantitative Engineering Analysis

Spring 2019

1 Learning Goals

By the end of this assignment, you should feel confident with the
following:

• Finding angular velocity from a parametric curve.

• Interpreting and writing basic programs for the NEATO.

• Partial Derivatives, and the Chain Rule.

2 Angular Velocity Revisited [3 hours]

Suppose we have a 2D parametric curve r(t) = f (t)ı̂ + g(t)̂. We saw
in the Night 1 assignment that the linear velocity vector is given by
r′(t) = f ′(t)ı̂ + g′(t)̂.

Determining the expression for the angular velocity ω(t) of our
robot is more involved. Before we derive the correct expression, we
will introduce the notion of angular velocity vectors. While express-
ing angular velocity as a vector may at first seem overly complex
(since in this case we know that the robot will rotate about the z-axis,
and it seems like we should just be able to compute the scalar mag-
nitude along with whether to turn clockwise or counterclockwise),
thinking about the angular velocity as a vector will enable our deriva-
tion to be done in a much more straightforward and generalizable
manner.

Angular velocity vectors point in the direction about which the
body rotates (which for our robot will be along either the positive or
negative z-axis). For right-handed coordinate systems (such as the
one we are using here), by convention, a positive rotation happens
counterclockwise about the direction of the rotation axis. Further, the
magnitude of the angular velocity vector indicates the angular speed.

In the problem at the beginning of class on Monday we discussed
the coordinate system attached to the robot: the body fixed frame.
Because the heading of the robot is locked to the tangent vector T̂
of the curve, we can think of the vector T̂ as being a constant in the
body fixed frame of the robot. The body fixed frame is rotating with
some unknown angular velocity vector ω with respect to the room
coordinate system. If we wish to know the time derivative of the

Night 2

Version: 2019-12-27

tangent vector T̂ = in the room coordinate system, we can use the
generalized relationship between the time derivatives of vectors in
two coordinate systems which are rotating with an angular velocity
vector ω with respect to each other. This expression is

dT̂
dt
|room =

dT̂
dt
|body + ω× T̂ (1)

(Full mathematical derivation here; nice heuristic explanation
here.) In the body frame of the robot, T̂ is unchanging, since it is
always aligned with the forward direction, so the term dT̂

dt |body is zero
leaving us with

dT̂
dt
|room = ω× T̂ (2)

Then we make use of the scalar triple product, which states that
a× (b× c) = b(a · c)− c(a · b). Using this we can derive our angular
velocity vector as follows

dT̂
dt
|room = ω× T̂

T̂× dT̂
dt
|room = T̂×ω× T̂

= ω(T̂ · T̂)− T̂(T̂ ·ω)

= ω(1)− T̂(0)

= ω

⇒ ω = T̂× dT̂
dt
|room (3)

The x and y components of the angular velocity vector will always
be zero because T̂ and dT̂

dt |room are in the x-y plane and orthogonal.
The magnitude of the z-component is the angular speed. If the z-
component is positive, we turn counterclockwise at that speed. When
it is negative, we turn clockwise at that speed.

Exercise (1) In the Night 1 assignment you found the unit tangent and normal
vectors for various paramaterized curves. We will use that infor-
mation to find linear and angular velocities, then translate those to
left and right wheel velocities for the NEATO.

The vector for a circle is given by:

r(t) = R cos αt ı̂ + R sin αt ̂, αt ∈ [0, 2π]

Mathematica hints:

• You can use the apostrophe to take a derivative

• Specify that t and α are real

http://envsci.rutgers.edu/~broccoli/dynamics_lectures/lect_06_dyn12_mom_eq_rot.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec08.pdf
https://en.wikipedia.org/wiki/Triple_product

Night 2

Version: 2019-12-27

• Include assumptions about coefficients being positive (however,
note that α does not have to be positive)

• Use the square root of the dot product rather than Norm, es-
pecially if you’re getting a bunch of absolute values in your
answer

• use Simplify

(a) What are the linear velocity vector and linear speed?

Solution:

The linear velocity vector is given by v(t) = r′(t) = x′(t)ı̂ +
y′(t)̂ + z′(t)k̂ or v(t) = v(t)T̂(t). For the case of the circle, we
know:

r′(t) = −Rα sin αt ı̂ + Rα cos αt ̂

So, the linear velocity vector is v(t) = αR(− sin αt ı̂ + cos αt ̂)

and the magnitude (linear speed) is v(t) = |α|R in unts of m
s .

(b) What is the unit tangent vector for the circle?

Solution:

The unit tangent vector is:

T̂ =
r′

|r′|
= − sin αt ı̂ + cos αt ̂

Note that this is independent of R or α.

(c) What is the unit normal vector?

Solution:

The unit normal vector is

N̂ =
T̂′

|T̂′|
= − cos αt ı̂− sin αt ̂

(d) What is the angular velocity vector?

Solution:

The angular velocity is constant: ω = αk̂.

(e) For the uniform circular motion we have been investigating so
far, what does the parameter we have labeled α represent? How
is it related to the time it takes to complete one traverse of the
circular trajectory?

Solution:

The parameter α is the angular frequency of motion, often de-
noted by ω. For a uniform circular motion, the frequency and
angular velocity are equal. The time to complete one traverse
ofthe circle is given by the period T = 2π

ω .

Night 2

Version: 2019-12-27

(f) How would you modify this equation for a circle of radius 1

m?

Solution:

R=1 m

(g) What value would you choose for α if you want your robot to
complete the circle in 30 seconds?

Solution:

We know that the product αt must go from 0 to 2π for the robot
to complete one cycle of the parameterized curve. So, after one
complete trip around the circle, αT = 2π, so α = 2π

T = 0.21

(h) What are the equations for the left and right wheel velocities for
the uniform circle? (d=wheel displacement)

Solution:

VL = R|α| − dα
2 and VR = R|α|+ dα

2

(i) What are the left and right wheel velocities needed for a 1 m
radius counterclockwise circle to be completed in 30 seconds?

Solution:

VL = Rα− dα
2 and VR = Rα + dα

2 measure wheelbase and up-
date solution here
measure wheelbase and up-
date solution here

Exercise (2) The vector for an ellipse is given by:

r(t) = a cos αt ı̂ + b sin αt ̂, αt ∈ [0, 2π]

(a) What is the unit tangent vector for the ellipse?

(b) What is the linear velocity vector? How does it differ from the
example of the circle?

(c) What is the unit normal vector?

(d) What is the angular velocity vector? How does it differ from the
circle?

(e) What are the left and right wheel velocities?

(f) Plot the linear velocity vector as a function of time for various
combinations of the paramters a, b, and α.

(g) Plot the angular velocity vector as a function of time for various
combinations of the paramters a, b, and α.

(h) Plot the left and right wheel velocities as a function of time for
various combinations of the paramters a, b, and α.

Night 2

Version: 2019-12-27

3 Fun with NEATOs [3 hours]

In the previous section we found the left and right wheel velocities
needed to drive a particular trajectory. In this section of the assign-
ment, we will be thinking about how to translate the velocity vectors
to a Matlab program that will control your NEATO.

The control of your NEATO is built on top of the Robotic Oper-
ating System (ROS), so you will be using ROS commands to control
the velocity values for your robot. We will start by playing with some
very basic commands, similar to what you did in class.

Consider the program below (You can download the code here):

This code snippet defines the function “driveforward” which will
cause your NEATO to.... you guessed it, drive forward. The function
definition is in line 1. You will notice that this function does not have
a meaningful output, its sole purpose is to move your robot forward.

3.1 The structure of a Simple Robot Program

Let’s break down what is happening in this program:

https://drive.google.com/file/d/1sq7yFwfhzcaJakDrcUYzD9HJHjxzhBs8/view?usp=sharing

Night 2

Version: 2019-12-27

• The inputs to the function are the distance to drive, and the speed.

• Line 7 of the program specifies that you will be publishing to the
ROS topic ‘raw_vel’.

• Line 10 defines a ROS message which will be sent to the ‘raw_vel’
topic.

• In line 14, a timer is started using the “tic” command.

• In line 17, a one by two vector with the left and right wheel veloc-
ities is assigned to the Matlab structure “message.Data”. In this
program the velocities are defined at the input to the function, but
they could also come from a velocity vector, pre-computed list, etc.

• In line 20, we use the “send” command to send the data in “mes-
sage” to the ROS topic specified by “pubvel” (in this case, ‘raw_vel’)

As soon as we use the “send” command, your robot will start
moving according to the wheel velocities in ‘message.Data’, and
will not stop until we tell it to. So, what is happening in the rest
of this program? At this point, we are not using a distance sensor
on the robot. We will introduce those in class on Thursday, but for
now we are basing distance off of time and velocity.

• Line 21 starts a loop that basically monitors how long the robot
has been moving forward.

• In line 22 we use the “toc” command to check how much time
has elapsed since “tic” was sent. This is very close to the amount
of time the robot has been moving. We use the simple fact that
distance = velocity × time to find the elapsed time needed to
travel the distance we specified in the function call. We say that
if we have reached that maximum time, we send a zero velocity
command in lines 25 and 26.

• If we have not reached the maximum elapsed time for our dis-
tance, we stay inside the loop and keep checking the time.

Exercise (3) Download the above program and open the m-file in Matlab. It is
a function, so it can be called from the command window using
the form:

output = driveforward(distance, speed)

Using this new function, try driving the NEATO for several com-
binations of distances and speeds. Mark the anticipated finish
position on the floor with tape or check. Time your robot as it
runs. Do the final distance and time match your expectations?

Night 2

Version: 2019-12-27

3.2 Receiving Sensor Data

In the previous example program we published to a ROS topic to
set the NEATO wheel velocities. In ROS you can also subscribe to a
topic to do things like receive sensor data. Download and open the
program driveUntilBump in Matlab.

Exercise (4) In line 2 the ‘rossubscriber’ command is introduced. From the
code, what sensor output are we monitoring?

Exercise (5) The variable ‘bumpmessage’ is a structure. What is the size of
‘bumpmessage.data’? What do the values contained in that vari-
able mean?

Exercise (6) What is the ‘driveUntilBump’ code commanding the robot to do?

(a) Test the ‘driveUntilBump’ code on a NEATO and verify that
your interpretation is correct.

Exercise (7) Modify the ‘driveUntilBump’ code to make it a function where the
robot velocity is an input.

Exercise (8) Using what you have learned from the examples above, write a
program that meets the following requirements:

(a) The program commands the robot to drive a designated dis-
tance at a chosen speed, and stops when that distance is reached.

(b) If the bump sensor is triggered, the robot reverses direction and
backs up for 5 seconds then stops.

Take a short video of your succesful robot, and include the code in
your assignment.

Try developing this code on your own first, then if you get stuck,
take a look at the program driveUntilBumpThenRunAway for
inspiration.

4 Partial Derivatives and the Chain Rule [2 hours]

Now work your way through the following sections and problems
from the book Multivariable Calculus by Stewart, and the book, A
First Course in Mathematical Modeling by Giordano, Fox, and

Horton. You can find pdf copies of the relevant sections on Canvas,
subject to the fair use policy. The key material is contained in Section
14.6, although we include a couple of prior sections for completeness.

Exercise (9) Please read Section 14.3 from Stewart on Partial Derivatives. Take
notes on important concepts and definitions.

https://drive.google.com/file/d/1DfVy8Nvc7KsOMiJcjBcAhPF8cUOe7-uv/view?usp=sharing
https://drive.google.com/file/d/1whHgaPFppUErc7qB__v0tZ_5z99tzGOz/view?usp=sharing
https://drive.google.com/file/d/1PMW_Smnfv3_aJ85pzC-yCx52dAQNWZNT/view?usp=sharing

Night 2

Version: 2019-12-27

Exercise (10) Please read Section 14.5 from Stewart on The Chain Rule. Take
notes on important concepts and definitions.

This is new material on extending the notion of the chain rule
from functions of one variable to functions of many variables. The
main results are captured in the pink boxes labeled 1 through 4 -
these are various cases of the chain rule. Again, this text is written
for a student who doesn’t have linear algebra. As you read these
rules, think about how you might use matrix notation to make this
cleaner and more compact. At this stage you should ignore the
section on Implicit Derivatives - it will be too confusing and take
too long.

Do the following exercises by hand and check your work in Math-
ematica.

Exercise (11) Complete question 1 from 14.5 Exercises.

Exercise (12) Complete question 5 from 14.5 Exercises.

Exercise (13) Complete question 11 from 14.5 Exercises.

https://drive.google.com/file/d/1PMW_Smnfv3_aJ85pzC-yCx52dAQNWZNT/view?usp=sharing

